Remote synchronization: detailed account of a peculiar pattern-formation mechanism

Ludovico Minati
Tokyo Institute of Technology, Tokyo, Japan
Institute of Nuclear Physics - Polish Academy of Sciences (IFJ-PAN), Kraków, Poland
University of Trento, Trento, Italy
Context

A “rewarding” experiment about relationship(s) between structural connectivity and synchronization in an electronic network
What is remote synchronization?

Synchronised

Non-synchronised

A B C

Remote synchronization: detailed account of a peculiar pattern-formation mechanism
L. Minati
Remote synchronization from mismatches

PHYSICAL REVIEW E 85, 026208 (2012)

Remote synchronization in star networks

A. Bergner, M. Frasca, G. Scitto, A. Buscarino, E. J. Ngamga, L. Fortuna, and J. Kurths

\[\dot{u}_i = (\alpha + i \omega_i - |u_i|^2)u_i + \frac{\sigma}{d_i} \sum_{j=1}^{N} a_{ij}(u_j - u_i) \]

Image credit: cited study, © APS
Remote synchronization as morphogenesis
Remote synchronization in brain networks?

Sensory-motor network: directly wired

Default-mode network: emergent

No direct anatomical link to posterior areas. Remotely synchronized?

Image source: Rosazza & Minati, 2011; © Springer Verlag
Remote synchronization: detailed account of a peculiar pattern-formation mechanism
L. Minati

A simple, reconfigurable non-linear network

![Diagram of a simple, reconfigurable non-linear network](image)
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Oscillator equations

\[
\begin{align*}
\frac{dv_1}{dt} &= \Gamma \left(2\pi F_1 (G_4 v_4 + G_5 v_5 - v_1), v_1 \right) \\
\frac{dv_2}{dt} &= \Gamma \left(2\pi F_2 (G_1 v_6 - v_2), v_2 \right) \\
\frac{dv_3}{dt} &= \Gamma \left(K_1 v_6, v_3 \right) \\
\frac{dv_4}{dt} &= \Gamma \left(2\pi F_3 (G_2 v_2 + G_3 v_3 - v_4), v_4 \right) \\
\frac{dv_5}{dt} &= \Gamma \left(K_2 v_2, v_5 \right) \\
\frac{dv_6}{dt} &= \Gamma \left(2\pi F_3 (G_4 v_1 + G_5 v_4 + G_6 v_6 - v_6), v_6 \right)
\end{align*}
\]

\[
\Gamma (x, y) = R (x) H (V_2 - y) - R (-x) H (V_2 + y)
\]

Parametric mismatch

\sim 0.5\% in physical system
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Applications in versatile pattern generation

Local Pattern Generators (LPGs)
Control parameters: P_3, P_4 and P_5.

Central Pattern Generator (CPG)
Control parameters: P_1 and P_2.

Local Pattern Generators (LPGs)
Control parameters: P_3, P_4 and P_5.

Image source: Minati et al., IEEE Access 2018. © IEEE
Phase vs. amplitude synchronization

Phase coherence \(r_{ij} = |\langle e^{i[\varphi_i(t) - \varphi_j(t)]} \rangle| \)

Instantaneous amplitude (envelope)
\[
v_i(t) + i \hat{v}_i(t) = A_i(t)e^{i\varphi_i(t)}
\]
where \(\hat{v}_i \) is the Hilbert transform of \(v_i(t) \)
\[
\hat{v}_i(t) = \frac{1}{\pi} \text{p.v.} \left[\int_{-\infty}^{\infty} \frac{v_i(\tau)}{t-\tau} d\tau \right]
\]
and where p.v. denotes the Cauchy principal value of the integral\(^{18}\).

Maximum cross-correlation or mutual information
\[
C_{XY}(\tau) = \frac{k_{XY}(\tau)}{\sqrt{\sigma_X^2 \sigma_Y^2}} \quad N_{XY}(d) = \frac{I_{XY}(d)}{\sqrt{H_X H_Y}}
\]
Numerical simulations reveal three regimes

- $G_6 = 0.196$
- $G_7 = -1.365$

Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Image source: Minati et al., CHAOS 2015. © AIP
Numerical simulations reveal three regimes

a: $G_6 = 0.196$, $G_7 = -1.365$

b: $G_6 = 0.096$, $G_7 = -1.53$

Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Image source: Minati et al., CHAOS 2015. © AIP
Numerical simulations reveal three regimes

a: $G_6 = 0.196$, $G_7 = -1.365$

b: $G_6 = 0.096$, $G_7 = -1.53$

c: $G_6 = 0.188$, $G_7 = 1.14$

Broadband chaos

Quasi-periodicity

Narrowband chaos

Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Image source: Minati et al., CHAOS 2015. © AIP
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Numerical simulations reveal three regimes

Image source: Minati et al., CHAOS 2018. © AIP
Numerical simulations reveal three regimes

Remote synchronization: detailed account of a peculiar pattern–formation mechanism

L. Minati

Image source: Minati et al., CHAOS 2018. © AIP
Effect of parametric mismatches
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Experimental implementation

Image source: Minati et al., CHAOS 2015. © AIP
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Experimental implementation

Top-level FPAA architecture
Experimental implementation

The Configurable Analog Module (CAM)
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Experimental implementation

- **GainHalf**
 - Half-cycle
- **GainHold**
 - Inverting only
- **GainInv**
 - Continuous Time
- **SumInv**
 - Up to three inputs
- **SumDiff (SumHalf)**
 - Up to four inputs
 - Add or subtract since input branches can be inverting or non-inverting
- **RectifierFilter**
 - Full Wave/Half Wave
 - Inverting/non-inverting
- **RectifierHalf**
 - Full Wave/Half Wave
 - Inverting/non-inverting
- **RectifierHold**
 - Half Wave Inverting only

Upon permission and courtesy of Anadigm, Inc.
Experimental implementation

- **FilterBilinear – One pole**
 - Low Pass/High Pass/All Pass
- **FilterBiquad – Two poles**
 - Low Pass/High Pass/Band Pass/Band Stop
 - Automatically chooses from multiple circuit topologies
- **Differentiator**
 - Output voltage slews – see documentation
- **Integrator**
 - Optional reset
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Experimental implementation

- **Multiplier**
 - Uses SAR (Input Y is quantized)
 - Subject to internal reference voltage error
 - Optional sample and hold on input X to equalize sampling time of two inputs (uses chip resources)

- **Comparator**
 - Single/Dual Input
 - Variable Reference

- **Hold – Sample and hold**

- **Oscillator Sine**
 - Subject to internal reference voltage error

- **Voltage (+/- 3 VDC)**
 - Subject to internal reference voltage error
Experimental implementation

Continuous-value, discrete-time

Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Upon permission and courtesy of Anadigm, Inc.
Experimental implementation

Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

From: A. Buscarino et al., A Concise Guide to Chaotic Electronic Circuits, 73, SpringerBriefs in Applied Sciences and Technology
Experimental implementation

A soft of “Chimera”: an analog plug-in system for digital computer

Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Remote synchronization: detailed account of a peculiar pattern-formation mechanism
L. Minati

Remote sync. close to quasi-periodicity

Correlation dimension (D_2)

Remote synchronization (η)

\[
\eta[r_{nm}] = \frac{\sum_{m=1}^{32} \sum_{n=1}^{32} \Theta[H(r-r')]_{nm}}{\sum_{m=1}^{32} \sum_{n=1}^{32} H(r_{nm} - r')},
\]

Image source: Minati et al., CHAOS 2015. © AIP
Experimental data - basics

Spectrogram

Phase sync.

Amplitude sync.

Reminiscent of a diffraction pattern?

Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Non-stationarity

Adjacent time-windows...
Non-stationarity

...reminiscent of observations in resting-state functional MRI

Experimental data – focus on spectrum

Two concomitant spectral relations:

1) \(f_B = f_H - f_C = f_C - f_L \)

2) \(f_H = f_L + f_C \) \(\rightarrow f_L = f_B \)

Reminiscent of classic AM modulation!

Lower sideband and baseband overlap!
From synchronization to causality

- Regression of the present of the target on its own past:
 \[e_{j|i,n} = y_{j,n} - E[y_{j,n} \mid y_{j,n}] \quad \text{\(\Rightarrow \)} \quad \lambda_{j|i} = E[e_{j|i,n}^2] \]

- Regression of the present of the target on its past and the past of the source:
 \[e_{j|ji,n} = y_{j,n} - E[y_{j,n} \mid y_{j,n}, y_{i,n}] \quad \text{\(\Rightarrow \)} \quad \lambda_{j|ji} = E[e_{j|ji,n}^2] \]

Granger causality (GC)

\[F_{i\rightarrow j} = \ln \frac{\lambda_{j|i}}{\lambda_{j|ji}} \]

Transfer Entropy (TE)

\[T_{i\rightarrow j} = \frac{1}{2} \ln \frac{\lambda_{j|i}}{\lambda_{j|ji}} \]

Mutual information and causality

Mutual info.

Granger with quadratic+ cross-terms

Linear Granger

Transfer Entropy

Image source: Minati et al., CHAOS 2018. © AIP
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Effect of “lesioning” by noise injection

- Voltage $v_j(t)$ / V vs. Time t/ms
- $\langle \Delta \max [C_{ij}(\tau)]_{\tau \geq 0} \rangle$
- $\Delta \max [C_{ij}(\tau)]_{\tau \geq 0}$ for Node Δi
- $\Delta \max [C_{ij}(\tau)]_{\tau \geq 0}$ for Node Δj

Image source: Minati et al., CHAOS 2018. © AIP
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Ring size and auxiliary system simulations

![Graphs showing ring size and auxiliary system simulations](Image source: Minati et al., CHAOS 2018. © AIP)
Propagation of external perturbations

Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Image source: Minati et al., CHAOS 2018. © AIP, ANT Neuro
Simplified chain model

1) An open network is considered in the form of a chain.
2) Two dynamical equations are removed.
3) $\Gamma(x, y)$ is removed for all voltages except v_3.
4) The parameters are set identically across all nodes.
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Simplified chain model

Image source: Minati et al., CHAOS 2018. © AIP
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Demodulation and interference
Demodulation and interference

Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Image source: Minati et al., CHAOS 2018. © AIP
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Instancing filters at specific points of chain

![Graphs showing instancing filters at specific points of chain](Image source: Minati et al., CHAOS 2018. © AIP)
Revised Granger model: baseband + sideband

Remote synchronization: detailed account of a peculiar pattern–formation mechanism

L. Minati

Image source: Minati et al., CHAOS 2018. © AIP
Small-world features, nonetheless...

$$S^{WS} = \gamma^{WS}_g / \lambda_g = \left(C^{WS}_gL_{rand} \right) / \left(C^{WS}_{rand}L_g \right)$$

a)

b)

C)
Small-world features, nonetheless...

Small-worldness in the brain (and not only) is an efficient trade-off!

Remote synchronization: detailed account of a peculiar pattern-formation mechanism
L. Minati

Conclusions

1) A complex mechanism of pattern generation was demonstrated.

2) Is this just “apparent” remoteness? Central importance of measure choice…

3) To what systems may such mechanism apply? Broadband vs. narrowband chaos, spectral relationships
Remote synchronization from mismatches

Remote synchronization in star networks

\[\dot{u}_i = (\alpha + i\omega_i - |u_i|^2)u_i + \frac{\sigma}{d_i} \sum_{j=1}^{N} a_{ij}(u_j - u_i) \]

Image credit: cited study, © APS
Non-monotonic effect of the coupling strength

Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Fading of remote synchronization in tree networks of Stuart-Landau oscillators

Baris Karakaya,1 Ludovico Minati,2 Lucia Valentina Gambassia,3 and Mattia Frasca3,4,*
1Faculty of Engineering, Department of Electrical, Electronics Engineering, Firat University, 23119 Elazig, Turkey
2World Research Hub Initiative—Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan;
Complex Systems Theory Department, Institute of Nuclear Physics—Polish Academy of Sciences (IFJ PAN), 31-342 Krakow, Poland.

\[
\begin{align*}
\dot{x}_i &= \alpha x_i - \omega_i y_i - x_i(x_i^2 + y_i^2) + \frac{\sigma}{k_i} \sum_{j=1}^{N} a_{ij} (x_j - x_i), \\
\dot{y}_i &= \omega_i x_i + \alpha y_i - y_i(x_i^2 + y_i^2) + \frac{\sigma}{k_i} \sum_{j=1}^{N} a_{ij} (y_j - y_i),
\end{align*}
\]

Image credit: Karakaya et al. PRE 2019, © APS
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Non-monotonic effect of the coupling strength

$$\dot{x}_i = \alpha x_i - \omega y_i - x_i(x_i^2 + y_i^2) + \frac{\sigma}{k_i} \sum_{j=1}^{N} a_{ij} (x_j - x_i),$$

$$\dot{y}_i = \omega x_i + \alpha y_i - y_i(x_i^2 + y_i^2) + \frac{\sigma}{k_i} \sum_{j=1}^{N} a_{ij} (y_j - y_i),$$
Remote synchronization: detailed account of a peculiar pattern-formation mechanism

L. Minati

Non-monotonic effect of the coupling strength

\[
\begin{align*}
 r_{\text{indirect}} &= \frac{2}{(N-1)(N-2)} \sum_{i=2, j>i}^{N} r_{ij}, \\
 r_{\text{direct}} &= \frac{1}{(N-1)} \sum_{j=2}^{N} r_{ij}.
\end{align*}
\]
Non-monotonic effect of the coupling strength

Image credit: Karakaya et al. PRE 2019, © APS
Thank you for your attention

References:

minati.l.aa@m.titech.ac.jp
ludovico.minati@ifj.edu.pl
lminati@ieee.org
http://www.lminati.it