
IEEE SMART CITIES INITIATIVE - TRENTO WHITE PAPER 1

HTTP Video Streaming: the quality - reliability -
latency triangle

Matteo Saloni, Member, IEEE
Master degree in Computer Science, University of Trento, Trento, Italy

Abstract—Nowadays, IP video traffic is responsible for a vast
amount of the global IP traffic over Internet, an increasing trend
fueled not only by the usage of personal computers, but also
by the rising in prominence of mobile devices and smart-tvs as
primary entertainment consumption devices among users.

As of 2018, the leading paradigm of delivery is HTTP-based
adaptive streaming, a technique which carries pre-encoded video
segments over HTTP/TCP packets. While many efforts have
been spent towards reaching a satisfying visual experience, one
critical point remains mostly untackled by all the prominent
HAS protocols: the latency of delivery. With the term latency we
indicate the time passed from the instant a video is captured to
the moment it gets displayed on the user’s device, a key aspect
in the viewing of live events such as sports or happenings.

In this white-paper we will evaluate some innovative ap-
proaches and technological advancements which can re-balance
the triangle between visual quality, network reliability and oc-
cupation and delivery latency, by first examining the reasons
which lead to an increase in latency for HAS protocols, and
then investigating some of the most promising proposals in the
field.

I. INTRODUCTION

IN a world where consumers are increasingly considering
Internet access as a basic utility, data consumption rates

are on an explosive path. According to studies [1], IP video
traffic is expected to reach 82 percent of all IP traffic by
2021, up from 73 percent in 2016. As such, network providers
and content distributors must face a continuous struggle for
bandwidth and efficiency, in order to deliver the expected
video quality to both PC and mobile users.

Both consumers and content producers are fully accustomed
to the usage of video streaming for a variety of service types
such as on-demand, live and time-shift viewing, but also
for chat and social media updates among many others. The
established expectation is being able to receive high quality
video, in terms of visual and audio details, which leads to the
usage of high resolution content, compressed with advanced
and extremely optimized codecs and delivered over high speed
networks.

While many modern techniques have been developed over
the years to improve the video streaming experience over the
best-effort Internet network, one single approach has won the
favor among content providers and device producers, HTTP
Adaptive Streaming (HAS). Every HAS protocol leverages
the same idea: temporally divide a single video into same-
length segments and encode each of these into many different
quality levels. Eventually, clients will reproduce the video
content by downloading a list of segments over HTTP.

As we will see in the following section, this idea can offer
many advantages to content producers, while at the same time
ensuring the availability of visually satisfying video renditions
for every use case, at the expense of the delay which elapses
between the acquisition of the video and the visualization on
the user’s screen (fig. 1).

Fig. 1. Quality - reliability - latency balancing for HAS, TCP/UDP streaming
and traditional broadcast TV.

While many on-demand use cases can live with such de-
lay, others like live content delivery, interactive systems or
synchronized viewing can’t withstand a variable delay in the
order of tens of seconds without a serious disruption in the
user’s experience. In the next sections we will present some
of the most promising approaches targeted at reducing and
fixing the latency, in an effort to improve the HAS adoption
among all the application fields.

II. ADAPTIVE STREAMING: QUALITY AND NETWORK
CHALLENGES

Traditionally, TV-based broadcast systems have been widely
employed to consume video content, a task which can be con-
sidered passive, in opposition to interactive tasks performed
with personal computers. Technological improvements, both
to screens and displays, along with the growth in connec-
tivity availability and the widespread adoption of personal,



IEEE SMART CITIES INITIATIVE - TRENTO WHITE PAPER 2

portable devices like smartphones, have eventually shifted the
paradigm: personal computers (in the broadest sense of the
word) have become the primary video consumption devices
for a large slice of population, especially among the younger
generations. Even TVs are becoming smart, by transforming
into an embedded system composed of a computer, a display
and a network access card.

This technological shift poses a remarkable amount of
problems, previously unknown to the broadcast TV ecosystem,
which worked under a precise set of assumptions:

• TV transmissions are broadcasted in a single quality level,
independently of viewing device: every user receives the
very same stream;

• Broadcasts are pushed from the producer through the dis-
tributing network until they reach the receiving devices,
there is no on-demand and a single network path carries
all the available channels.

With Internet-based streaming instead, mostly due to the
widespread adoption of the so called post-PC devices like
smartphones and smart-TVs, the following problems need to
be solved by content distributors:

• different display sizes and resolutions, bounded with a
variety of viewing distances, rise the need for many
different video flavors with different resolutions, codec
optimizations and bandwidth usage;

• network layouts, flexible routing paths and a widespread
lack of visibility of end user devices over the Internet,
due to firewall and Network-Address-Translation (NAT)
usage, drive the adoption of HTTP as the transport
protocol for video content.

Moreover, the ever-growing list of use cases for video
streaming diverges from the traditional TV architecture, where
a content provider distributes the content to all the viewers
at once, in a push-based approach. Nowadays, the leading
paradigm is a pull-based approach, where users request, and
subsequently receive, a content from a provider.

Various approaches and patents have been developed to
ensure that viewers can obtain a visual quality suitable for
the device characteristics, mainly in terms of perceived qual-
ity and network requirements, which eventually led to the
development of HTTP Adaptive Streaming protocols, which
embed video content inside HTTP packets, by segmenting
a continuous stream into many fixed-duration consecutive
segments, which can be read and eventually reproduced as
a continuous whole video by players (fig. 2).

The usage of HTTP means that HAS providers can leverage
pre-existing delivery networks, along with caching and prox-
ies, to distribute their load in a cheaper and more robust way
than what is possible with Real-time Transport Protocol(RTP)
or User Datagram Protocol (UDP) based protocols. Perhaps
more importantly, common network firewalls, and also proto-
col and content filters employed by Internet service providers
(ISPs), corporate networks and telecom carriers, usually avoid
putting restrictions over HTTP traffic, because the protocol is
used for web surfing. As such, network traversal is generally
ensured for HTTP streaming protocols.

Fig. 2. HTTP Adaptive Streaming main advantages.

Additionally, HAS dictates that clients initiate the stream-
ing, by requesting a list of segments to the provider, a simple
trick which removes the need for streaming servers to keep
long-lasting socket connections with clients. Instead, when
needed clients will make a distinct connection for each of the
video segments, as dictated by their own viewing progression.

This particular concept also enables HAS to deliver the
adaptive part, by preemptively encoding the same video into
many different quality levels and by letting the client pick
the most appropriate rendition during the playback via rate
adaptation heuristic. By downloading a master playlist, which
contains the references to every rendition available on the
server, the video player can instantaneously transition between
quality levels, simply by switching to a different media playlist
inside the same group. Source video sequences are at first
temporally divided into fixed-duration blocks, and then each
fragment is individually encoded into multiple renditions. As
such, all the files derived from the same segment contain
exactly the same fraction of the source video, and they are
temporally aligned within the global time-line. Consequently,
they are perfectly interchangeable during reproduction, with-
out experiencing any misalignment, frame drop or hiccup.
Furthermore, the entire adaptation and bandwidth estimation
process is executed by clients, an approach which frees servers
from the need to maintain session state information on every
active client, and from the need to estimate and then deliver the
most suitable rendition. Ideally, different players could employ
different techniques for quality selection, which could be tuned
to favor visual quality, bandwidth usage, or even computational
complexity and power usage, all in an autonomous way.

The ultimate goal is to maximize the Quality of Experience
(QoE) [2]: a measurement which objectively evaluates all
the aspects that impact the human perception of multimedia
content like visual quality, number of playback interruptions,
number of quality switches.

All these techniques employed by HAS led to a strict
dependency on the video segmenting and encoding process,
which must produce video fragments and playlists in ad-
vance, in order to let clients know how to move forward
in the reproduction at any given time. There is simply no
way for servers to contact the clients to push additional
content towards them, except embedding the references into
the playlist. While this is perfectly acceptable for on-demand
content, which can be prepared and assembled beforehand,



IEEE SMART CITIES INITIATIVE - TRENTO WHITE PAPER 3

live or near-live scenarios (eg. Digital-Video-Recorder) can’t
work under these assumptions. The solution adopted by the
prominent HAS protocols like Dynamic Adaptive Streaming
over HTTP (DASH) and HTTP Live Streaming (HLS) mandates
the adoption of an open-ended playlist, where servers append
segment references as soon as they are ready, and players
continuously download the updated playlist at regular intervals
during reproduction, to update their knowledge of the video
stream.

III. THE LATENCY PROBLEM

HAS protocols can ensure an exceptional visual experience,
but at the expense of an aspect often forgotten: the latency of
delivery, the camera-to-display delay which in current deploy-
ments can reach the order of tens of seconds. Many different
steps in the adaptation and distribution process contribute to
this built up in the delay, but ultimately it is the very nature
of HAS approaches which requires a valuable amount of time,
mainly due to the segmentation and distribution phases.

We can identify two principal areas of interest, which added
together negatively impact the latency of delivery:

• start-up time, which involves the time required to start a
video reproduction;

• end-to-end latency, which involves the delay between the
video capture and the effective display.

We will briefly mention the player startup to highlight how
it affects the end-to-end latency, and then analyze it for live
events, which can be ultimately be referred to as lag time,
meaning the time the stream itself lags behind the actual event
or live broadcast.

A. Start-up time

Reproduction startup can be seen as the amount of time
between the moment the user starts the player and the moment
the video starts playing. These days, industry averages range
in the 900 - 1,200 millisecond (ms) range from request to
playback-ready state, but some customized applications can
reach averages around the 500 - 650 ms range, by leverag-
ing hardware optimizations and decoding acceleration paths
available on specific platforms.

When using segment-based protocols, as in the case of
HAS, players need to download at least a whole segment,
and then buffer a minimal amount of frames in order to start
reproduction. As such, low startup time can be obtained only
if segments are small and already available on the server,
otherwise clients will need to download a large amount of
data before being able to decode and display the first video
frame.

In lossy video codecs, visual quality strictly relates to avail-
able bandwidth. One of the key aspects in obtaining bandwidth
efficiency derives from the ability to buffer and temporally op-
timize entire sequences (frames) of related images during the
encoding. When a video is segmented into chunks of limited
duration, the encoding process is executed independently for
each chunk and every resolution or quality level. The natural
consequence is the inability to properly optimize the encoding
for small segments. Low startup times with HAS require small

segments, because players need to download them fully before
the decoding phase, but small segments can’t be used to deliver
an high QoE. Large segments, on the other hand, ensure a
proper visual quality, at the expense of startup times.

Given a properly optimized player, in any case startup
time adds to the latency introduced by servers in preparing
and distributing the content, which dominates the end-to-end
latency for HAS protocols.

B. End-to-end latency

As previously described, HAS protocols works under the
assumption that a video stream can be processed and prepared
in advance, before clients initiate the reproduction: players
need to download a playlist containing at least a single suitable
segment to start the reproduction (cfr. figure 3).

This process can be briefly summarized by the following
steps :

• First, an encoder takes the actual video signal and con-
verts it into a digital format, usually a lossless codec
suitable for acquisition and processing but unusable for
HAS delivery;

• the digital video is converted in different formats, usually
selecting lossy codecs, and temporally segmented into
fixed-length chunks;

• if required, chunks are also transformed into different
resolutions or quality levels, to support the adaptive
reproduction;

• a playlist is prepared, containing the references (usually
URLs) to all the video chunks;

• the actual files are distributed over a Content Delivery
Network (CDN), a globally distributed set of servers
which will receive the client requests and eventually
deliver the files over HTTP.

Each step requires a finite amount of time to be executed,
and the adding up of all the processing and distribution times
contributes to an industry-standard delay of 30 - 60 seconds,
as usually experienced with HAS. While on-demand video
leverages pre-existing content, live streaming has no other
choice but to execute the whole process in real-time, starting
from a live video source up to the client playback.

Fig. 3. HTTP Adaptive Streaming video pipeline:
1. Camera acquisition and digitalization; 2. Segmenting and encoding; 3.
Video files and playlist assembly; 4. CDN distribution; 5. Client reproduction.
The first three steps are executed in a push-oriented video-production process,
while the last two are pull-based, initiated by clients.

The acquisition of a video signal can be completed in
a limited amount of time, thanks to the usage of hardware
accelerated encoders which can deliver digital video to the
following processing block with an average delay in the order
of a couple (or tens) of frames, i.e. well under a second.
Consequently, the actual delay depends on the segmenting,
transcoding and distribution phases.



IEEE SMART CITIES INITIATIVE - TRENTO WHITE PAPER 4

The video segmenting minimal delay strictly depends on
the duration selected for video segments: at the very minimum
the segmenter block has to buffer a whole segment interval of
the incoming video, plus whatever frames are needed to satisfy
the video codecs requirements, and the additional amount
needed to ensure a steady processing. For example, with a
5 second duration the first chunk will be available at best 5
seconds after the video acquisition.

Each video chunk has to be transformed, in a multi-step
process which

• scales the resolution multiple times to produce different
renditions;

• encodes each version in an appropriate codec;
• packages each video with the audio track into a container

file suitable for the distribution;
• updates the playlist with a reference linking every video

chunk into the correct position.
Given an adequate computational capability server-side, and

an optimally engineered trans-coding software, all these steps
can be executed together, leveraging the resources common to
every rendition to reduce the overhead of producing multiple
adaptations of the same source. Nevertheless, a finite, discrete
amount of time will be required, an amount which nowadays
can be estimated at best around the single-second mark for
our 5 seconds long sample.

After transforming the video into many different files, origin
servers need to distribute the content towards the edge nodes,
usually a CDN which ensures the load distribution and the end-
user reachability. Both push- and pull-based approaches are
equally valid, but usually web distribution networks employ
a pull approach, which requires a user HTTP request on an
edge node to trigger the download of the source file from the
origin server. Afterwards, each subsequent request for the same
file will be directly delivered by the CDN node, saving the
upstream round-trip and reducing the delivery delay. But the
first client request involves a FETCH from the origin server, an
operation which introduces a sizable delay, which is directly
transferred into the end-to-end latency measure.

Lastly, the client player will need to request the playlist,
individuate the most appropriate rendition, fetch the segment
playlist and the download the video segments in order to be
able to reproduce the actual video content.

As we can see, it is the protocol nature, and the video pro-
cessing it mandates, which introduces all the various delays. In
the following section, we will evaluate some of the proposed
and suitable solutions for reducing the lag.

C. Client synchronization: the soccer problem

As a direct consequence of the increased and unpredictable
delay introduced by HAS protocol, client playback synchro-
nization becomes a challenging argument during the streaming
of live events. As previously described, each client before
starting the reproduction of a live stream has to perform
a number of steps, all of which are initiated right on the
device itself, and not on the server side. Given that state-
of-the-art HAS protocols do not explicitly envision a client
synchronization procedure, each player has to autonomously

decide how to handle the start-up procedure, particularly in
terms of:

• where in the video playlist start downloading segments;
• how many video files download and cache before begin-

ning reproducing them;
• how much buffer, in terms of data or frames, keep in

player to ensure a consistent reproduction.
The first point is luckily addressed by the most recent

revisions of both DASH and HLS, the two prominent HAS
protocols in use today, which both offer an annotation scheme
for content producers to instruct players on the way to handle
live playlists: the adopted solution utilizes either the adoption
of a specific amount of segments, counting from the end of
the playlist, to instruct clients about the starting point, or the
time-stamping of segments to provide a precise chronological
and temporal advice to players. Either way, these protocols
can at least ensure that no client will start processing the
video playlist outside a small window, which comprises only
a couple of segments.

Even after this reduction of randomness in the playlist
parsing, HAS clients can actually start the reproduction during
a window of time large at minimum 2x/3x the duration of a
single video segment, depending on the instant they download
the playlist and the internal amount of caching and buffering
done. This can amount to tens of seconds, even in deploy-
ments optimized for live events and with clients accessing the
web with an adequate and stable network connection. More
commonly, when considering real usage with mobile clients,
unreliable connections and un-optimized video segmenting,
the amount of de-synchronization between any two clients
accessing the same stream could be measured in several tens
of seconds or even minutes.

As a result, it is almost unavoidable to experience a percep-
tible disconnection between the contents displayed on different
screens, even if the reproduction is started at the same time
by users. The implication on client experience is the inability
to reproduce the same video concurrently on more then one
screen, in a synchronized fashion, a common concept withing
an home with multiple TVs. In fact, traditional broadcast
over air or cable, thanks to the push-based approach, ensures
that every single client will receive the very same content at
the very same time, minus the transmission latency. Start the
reproduction of a TV channel, and the content will be the same
on every additional device connected to the same channel over
the same network path, independently of the playback start
(fig. 4).

Fig. 4. TV broadcasting pipeline:
1. Camera acquisition and digitalization; 2. Media adaptation and encoding;
3. Air/Sat/Cable distribution; 4. Client reproduction.
The whole the process happens in push, from content producers towards end
users.

This eradicated expectation is regularly disappointed by



IEEE SMART CITIES INITIATIVE - TRENTO WHITE PAPER 5

HAS streaming.
This problem manifests itself also during highly popular

events, like sports matches, which are followed by a vast
amount of people in a given area. For example, soccer matches
in Italy are followed by many individuals, both at home or
within public places like pubs, clubs, even theaters. The rapid
pace of action, a characteristic of many games, implies that
during a couple of seconds the state of the match could change,
favoring first one and then the opposing party. When clients are
un-synchronized, these topical moments will be received and
displayed on screen at different times, according to the real-
world delay accumulated by the single device. As such, the
people reaction, often shared via social networks, messages,
live blogs or even by voice, can effectively disclose the result
of a single game action to all those in reach, which have yet
to see it take place on their displays, due to the delay. By
taking inspiration from Huysegems et al. [3], we can call this
spoiling of live sports events the soccer problem: the result
of an action is spoiled by social media or neighbors when the
goal has not yet been shown on the screen.

While this problem can be dismissed as a minor incon-
venience, it is nonetheless a deviation from an established
habit, which can impact negatively on the reception and thus
adoption of HAS streaming within the live sports scenario.

IV. CURRENT AND PROPOSED SOLUTIONS

Given the importance of video streaming as a first-class
citizen of the web, techniques and protocols are a hot topic
not only for scholars and researchers, but also for the big
technological companies, which invest money and resources
in order to improve the technological landscape and the user
experience. This section will briefly highlight some of the
viable and promising approaches, which could help reducing
the latency problem without compromising the efficiencies
and excellences achieved by the current state-of-the-art HAS
protocols.

A. The naive: super-short segments

If we analyze the design principles and the video pipeline
behind HAS protocols, we can intuitively understand that
employing large segments, while optimal for video encoders,
has an immediate drawback on the time required to acquire,
segment, encode and deliver those fragments. By reducing
the segment size, we can thus immediately gain back the
time lost during the video pipeline, and reduce at the same
time the startup delay and the end-to-end latency. This
naive solution, while easily implementable, can be adopted
only when working with segments no less than a couple of
second long, otherwise the overhead generated by the encoding
codec, along with the induced increase in the amount of HTTP
requests will negatively impact on the protocol efficiency.

Putting aside those concerns, we can speculate on the usage
of super-short segments, with a sub-second duration. In this
case, the duration of a single segment will barely impact on
the end-to-end latency, due to the minimal amount of time
required for the acquisition and encoding processes. Given an
average sub-100ms latency obtainable when using a Content

Delivery Network, we can easily compare the time required to
transmit a single packet from client to server, and back, to the
duration of a single super-short segment. Due to the round-trip
dictated by HTTP streaming, where clients needs to issue an
HTTP GET to receive a video file from the server, we can
conclude that the simple usage of shorter segments alone can
not solve the latency problem. Furthermore, the mere adoption
of smaller segments can not help in synchronizing different
players viewing the same content, because the mere reduction
of the end-to-end latency, even when under the 10 seconds
mark, can still negatively impact the live sports experience,
where a sub-second synchronization is mandatory.

B. Partial-segments

Improving on the idea of short-segments, recent works (cfr.
[4], [5] and [6]) have explored the feasibility of providing
clients with partial-segments early on during the encoding
process. Thanks to the integration of HTTP chunked transfer
encoding, clients can start downloading a partial file as soon
as the server starts writing it, with the caveat that further byte
blocks of the same file can be accessed via different HTTP
conditional requests. This approach can avoid the encoding
and caching problems associated with the usage of short
segments, and at the same time enable clients into experiencing
shorter start-up delays and end-to-end latency.

One problematic area, shared with the previous approach,
remains: the explosion of HTTP requests and the related
network overhead. Similarly to the short-segment approach,
clients need to issue a request over HTTP for smaller blocks,
leading to an increase in the overhead and ultimately in a
reduction of available bandwidth for video content, at the
expense of visual quality.

C. HTTP/2: Push-based approaches

As previously introduced, HAS protocols leverage HTTP
as the transport protocol for video segments. Both the two
major streaming protocols, namely HTTP Live Streaming [7]
and MPEG-DASH [8], were defined and published before the
HTTP/2 standardization, which happened in 2015 [9]. The new
major version of the HTTP protocol provides new features
targeted at reducing the load time during web browsing and
improving the bandwidth utilization. One of those features
could help in improving video streaming protocols, server-
side push. This technique enables the origin server to send data
directly to clients, after an initial request, without awaiting the
reception of subsequent GET request. Wei et al. [6] explore
this feature, by proposing and evaluating a server push based
low-latency mechanism in a MPEG-DASH prototype. By
employing a 1-second segment duration, along with a server
push of k-segments after each client request, they consistently
manage to reduce the end-to-end latency for live streaming
down to 10 seconds. Moving from the same hypothesis, van
der Hooft et al. [10] propose a novel approach which can
successfully utilize super-short segments, with a sub-second
duration, to achieve a end-to-end latency of around 6 seconds,
with a start-up time around the 1 second mark.



IEEE SMART CITIES INITIATIVE - TRENTO WHITE PAPER 6

These promising results demonstrate how the combination
of HTTP/2 and super-short segments can greatly alleviate the
latency problem, but they require further research to optimize
and improve the video codecs and the HTTP infrastructure,
in order to guarantee an adequate visual quality under every
network condition.

The server-based push approach could also be used to im-
plement a client synchronization protocol, to solve the soccer
problem. Furthermore, some frameworks recently published
[11] explore the usage of server profiling and client storage to
reduce the startup time, even for the worst-case situation of
mobile networks with large Round Trip Time (RTT).

D. 5G networks and edge computing

The advent of 5G networks is stimulating investments
and research funding towards edge computing, an approach
which leverages network edges to provide micro and virtual
data-centers closer to users than in traditional centralized
approaches. Moving computational and storage capabilities
towards users immediately reduces the response time, im-
proving on the idea behind Content Delivery Networks. In
order to effectively exploit this novel proximity between users
and servers, the network should dynamically and pro-actively
schedule and destroy service instances on the most suitable
nodes, taking into account contextual knowledge and network
information [12].

Scoca et al. [13] explore the consequences of moving
latency-sensitive applications to edge computing, with a major
focus on live streaming. They demonstrate significant improve-
ments in bandwidth utilization, and more interestingly in end-
to-end latency. Their studies show that strict proximity of end
users to the nodes delivering the video stream reduces the
delay not only because of the reduced network path or physical
distance, but also that moving the trans-coding process as well
further contributes to the delay reduction, thanks to the cut of
another network trip between CDN nodes and origin servers.

Closely related to edge computing, research in the 5G net-
works area also can improve video streaming over the Internet,
and help reduce the latency problem (cfr. [14], [15], [16] and
[17]). The various approaches explore the requirements for
video streaming and the techniques which can improve the
delivery of content over 5G networks. In particular, researches
focusing on caching and network path optimization, along
with virtual CDN usage, have shown interesting results in
optimizing the bandwidth efficiency and reducing the lag
experienced when consuming video streams with current-gen
networks.

E. Application level multi-path

Another different approach, targeted at reducing the latency
between video acquisition and content playback, has shown
interesting results: multi-path video delivery. While the idea of
multi-path in data networks has been widely researched during
the years, Houz et al. [18] propose a novel approach which
addresses the latency problem by implementing multi-path at
the application level. By leveraging network level multi-path
and the TCP protocol, their video player can reach a latency

below 100ms. This impressive result is obtained by leveraging
features exposed by video standards like MPEG and ISO,
but also by heavily modifications of the DASH protocol and
further tuning of video encoding: by optimizing the delivery
of single frames, and leveraging the multi-path network to
transport each type of frame over the most suitable link, they
demonstrate the ability to reach a 60ms delay target.

While interesting and promising, this solution can be only
partially adopted by general purpose HAS protocols, since the
encoding, packaging and delivery of the video stream requires
an unified approach over the transport and application layers,
and a custom software stack for both server and clients. As
such, it could be adopted by large scale video providers, which
control and implement the software for both the client and the
server. In order to reach mass adoption, this approach requires
extensive modification to streaming protocols, players, CDN
networks which would probably require years to be completed.

F. Hybrid Cloud/P2P distribution

Video providers utilizing HAS protocols heavily rely on
fast connections and distribution networks to guarantee an
adequate reachability and performance level. Streaming over
HTTP ensures that video segments can be treated as regular
files, delivered via a multitude of HTTP caching proxies,
thus avoiding the cost associated with a dedicated streaming
infrastructure. Nevertheless, regular CDNs can be a pricey
commodity for high volume providers. As such, many have
explored alternatives solution, which leverage inexpensive
peer-to-peer (P2P) networks to reduce the number of servers
required to support a given amount of users (cfr. [19], [20]
and more recently [21]). With the hybrid P2P/Cloud approach,
the users viewing the video content could become members of
the distribution network, relying each segment to those in the
proximity with their own upload link, or thanks to cloud com-
puting edge network devices could act as the relaying party.
The cost reduction for the providers becomes an immediate
penalty for the quality-of-service, since often end users do
not possess bandwidth or computational capability comparable
to CDN servers. Moreover, the relay process introduces an
additional step in the delivery chain, with the obvious result
of an immediate increase in the end-to-end latency. Regarding
the startup delay, the usage of P2P networks could in theory
provide an advantage to users, in the very specific case that
one of their peers (i.e. one on the same network path) locally
possesses the required video segment. This advantage anyway
is negated by the time required for nodes to receive a list
of available peers, either from a server or by autonomously
exploring the network.

A recent research by Provensi et al. [22] explores the
implementation of a cloud-assisted P2P streaming system,
where latency is kept at reasonable levels by combining P2P
dissemination of video segments with a cloud based self-
organizing system. Their work demonstrates that an hybrid
approach can greatly reduce infrastructure costs for providers,
and at the same time ensure an end-to-end latency under the 20
seconds mark, a promising achievement which could support
the live streaming use case. Moreover, the utilization of such



IEEE SMART CITIES INITIATIVE - TRENTO WHITE PAPER 7

a hybrid approach could provide the basis for the implementa-
tion of a synchronization scheme, targeted at solving the soccer
problem

V. CONCLUSION

Live video streaming applications and platforms are in-
creasingly popular among end users. Major web players like
YouTube, Facebook, Amazon, along with traditional TV broad-
casters, are aggressively targeting live event coverage and
transmission, reaching millions of users all over the world.
While current state-of-the-art HAS protocols can ensure an
high visual quality and an optimal viewing experience over
a wide range of devices, there is no accepted solution to
guarantee a minimal end-to-end latency for live content. Many
interesting approaches, as briefly depicted in the previous
section, could help in minimizing the various delays built in
the video delivery pipeline, but none of them is sufficient by
itself. We can thus speculate that hybrid approaches, com-
bining the usage of short-segments, edge computing, HTTP/2
push and potentially P2P delivery, could provide an ade-
quate solution in keeping latency under control, and maybe
even in implementing a synchronization protocol which could
support the live sports or interactive broadcast use cases.
The complexity associated with all the different approaches
will probably ensure that no globally usable solution will be
adopted in a reasonable time window, but specific approaches
will surely be adopted for the most relevant cases by the
big players, which can leverage content acquisition and pro-
cessing, network distribution and player capabilities within
their own organizations. Nevertheless, we hope that standard,
widely accepted streaming protocols like MPEG-Dash and
HTTP Live Streaming will eventually evolve and thus avoid a
fragmentation of the streaming landscape towards proprietary
or vertically-integrated solutions, with the risk of hindering
the competition, hampering the open research and ultimately
worsening the user experience.

VI. ACKNOWLEDGMENT

This project is supported by a student grant of the IEEE
Smart Cities Initiative.

REFERENCES

[1] C. V. N. Index, “The zettabyte era–trends and analysis,” Cisco white
paper, 2017.

[2] I. T. Union, “ITU-T Recommendation P.10/G.100,” Vocabulary for
performance and quality of service, 2006.

[3] R. Huysegems, J. van der Hooft, T. Bostoen, P. Rondao Alface,
S. Petrangeli, T. Wauters, and F. De Turck, “HTTP/2-based methods
to improve the live experience of adaptive streaming,” in Proceedings
of the 23rd ACM international conference on Multimedia. ACM, 2015,
pp. 541–550.

[4] N. Bouzakaria, C. Concolato, and J. Le Feuvre, “Overhead and per-
formance of low latency live streaming using MPEG-DASH,” in In-
formation, Intelligence, Systems and Applications, IISA 2014, The 5th
International Conference on. IEEE, 2014, pp. 92–97.

[5] J. Le Feuvre, C. Concolato, N. Bouzakaria, and V.-T.-T. Nguyen,
“MPEG-DASH for low latency and hybrid streaming services,” in
Proceedings of the 23rd ACM international conference on Multimedia.
ACM, 2015, pp. 751–752.

[6] S. Wei and V. Swaminathan, “Low latency live video streaming over
HTTP 2.0,” in Proceedings of Network and Operating System Support
on Digital Audio and Video Workshop. ACM, 2014, p. 37.

[7] R. Pantos and W. May, “HTTP Live Streaming: draft-pantos-http-live-
streaming-06,” Published by the Internet Engineering Task Force (IETF),
vol. 24, 2011.

[8] I. Sodagar, “The mpeg-dash standard for multimedia streaming over the
internet,” IEEE MultiMedia, no. 4, pp. 62–67, 2011.

[9] M. Belshe, R. Peon, and M. Thomson, “Hypertext Transfer Protocol
Version 2 (HTTP/2),” Internet Requests for Comments, RFC Editor, RFC
7540, May 2015.

[10] J. Van Der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, T. Bostoen,
and F. De Turck, “An HTTP/2 push-based approach for low-latency live
streaming with super-short segments,” Journal of Network and Systems
Management, vol. 26, no. 1, pp. 51–78, 2018.

[11] J. van der Hooft, C. De Boom, S. Petrangeli, T. Wauters, and
F. De Turck, “An HTTP/2 push-based framework for low-latency adap-
tive streaming through user profiling,” in NOMS 2018-2018 IEEE/IFIP
Network Operations and Management Symposium. IEEE, 2018, pp.
1–5.

[12] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” IEEE Access, vol. 5, pp. 6757–6779, 2017.

[13] V. Scoca, A. Aral, I. Brandic, R. De Nicola, and R. B. Uriarte, “Schedul-
ing latency-sensitive applications in edge computing.” in CLOSER, 2018,
pp. 158–168.

[14] J. Qiao, Y. He, and X. S. Shen, “Proactive caching for mobile video
streaming in millimeter wave 5g networks.” IEEE Trans. Wireless
Communications, vol. 15, no. 10, pp. 7187–7198, 2016.

[15] G. Carrozzo, F. Moscatelli, G. Solsona, O. P. Gordo, M. Keltsch,
and M. Schmalohr, “Virtual cdns over 5g networks: Scenarios and
requirements for ultra-high definition media distribution,” in 2018 IEEE
International Symposium on Broadband Multimedia Systems and Broad-
casting (BMSB). IEEE, 2018, pp. 1–5.

[16] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. Leung, “Cache in the
air: exploiting content caching and delivery techniques for 5G systems,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 131–139, 2014.

[17] C.-F. Lai, R.-H. Hwang, H.-C. Chao, M. M. Hassan, and A. Alamri,
“A buffer-aware HTTP live streaming approach for SDN-enabled 5G
wireless networks,” IEEE network, vol. 29, no. 1, pp. 49–55, 2015.

[18] P. Houzé, E. Mory, G. Texier, and G. Simon, “Applicative-layer multi-
path for low-latency adaptive live streaming,” in Communications (ICC),
2016 IEEE International Conference on. IEEE, 2016, pp. 1–7.

[19] I. Trajkovska, J. Salvachua Rodriguez, and A. Mozo Velasco, “A novel
p2p and cloud computing hybrid architecture for multimedia streaming
with qos cost functions,” in Proceedings of the 18th ACM international
conference on Multimedia. ACM, 2010, pp. 1227–1230.

[20] X. Jin and Y.-K. Kwok, “Cloud assisted p2p media streaming for
bandwidth constrained mobile subscribers,” in Parallel and Distributed
Systems (ICPADS), 2010 IEEE 16th International Conference on. IEEE,
2010, pp. 800–805.

[21] F. Wang, J. Liu, M. Chen, and H. Wang, “Migration towards cloud-
assisted live media streaming,” IEEE/ACM Transactions on networking,
vol. 24, no. 1, pp. 272–282, 2016.

[22] L. Provensi, F. Eliassen, and R. Vitenberg, “A cloud-assisted tree-based
p2p system for low latency streaming,” in 2017 International Conference
on Cloud and Autonomic Computing (ICCAC). IEEE, 2017, pp. 172–
183.


